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The onset of Bloch oscillations in an exactly solvable one-dimensional tight-binding lattice model with
increasing hopping rates between adjacent sites is theoretically investigated. In particular, it is shown that
Wannier-Stark localization is attained at a finite value of the applied dc field. An optical realization of the
lattice model, based on light transport in engineered waveguide arrays, is also proposed.
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Bloch oscillations �BOs�, i.e., the oscillatory motion of
electrons in a periodic periodical induced by a dc field, are
one of the most striking predictions of the semiclassical
theory of electronic transport.1 In ordinary crystals these os-
cillations cannot be observed because collisions dephase the
coherent motion of electrons on a time scale, which is much
shorter than the BO period TB=h / �eEa�, where a is the lat-
tice period, e is the electronic charge, and E is the applied dc
electric field. In solid-state physics, BOs have been observed
after the advent of high-quality semiconductor superlattices,2

culminating in the observation of terahertz radiation from
coherently oscillating electrons.3,4 More recently, the analogs
of electronic BOs have been predicted and experimentally
observed for ultracold atoms5 and Bose-Einstein
condensates6 in tilted optical lattices, for optical waves in
arrays of evanescently coupled optical waveguides7 and pho-
tonic superlattices,8 and for sound waves in acoustical
superlattices.9 In the simplest single-band and tight-binding
one-dimensional lattice model, the existence of BO is basi-
cally related to the circumstance that the energy spectrum
changes from continuous �a band structure with delocalized
Bloch eigenstates� in absence of the external field to a dis-
crete ladder energy spectrum and localized eigenfunctions
�Wannier-Stark states� when the external field is applied.10 It
is remarkable that the transition from extended �Bloch� to
localized �Wannier-Stark� states occurs, in principle, for any
infinitesimally small dc electric field. Recently, the onset of
BOs in several lattice model generalizations has been theo-
retically investigated, including BOs in nonlinear lattices,11

BOs in aperiodic lattices with long-range-correlated
disorder,12 BOs with spatially inhomogeneous dc fields,13

BOs in quasicrystals,14 BOs for interacting bosons,15 and
BOs in disordered lattices with interparticle interaction.16 In
particular, it was shown that BOs survive in aperiodic lattices
with long-range disorder, providing a useful tool to measure
the energy width of the delocalized phase states.12 As most of
previous works have focused on lattice models with some
disorder or nonlinearity, BOs in ordered lattices with inho-
mogeneous hopping rates have not received much attention
yet.

In this Brief Report the existence and properties of BOs in
a one-dimensional tight-binding lattice model with inhomo-
geneous intersite coupling is theoretically investigated. A
noteworthy feature of this model is to be exactly solvable

and to exhibit a threshold dc field for Wannier-Stark local-
ization. An optical realization of the lattice model, based on
light transport in circularly curved waveguide arrays, is also
proposed.

We consider a tight-binding Hamiltonian with an external
dc electric field on a one-dimensional lattice of spacing a

H = − �
n=1

�

Jn��n��n + 1� + �n + 1��n�� − eEa�
n=1

�

n�n��n� , �1�

where �n� is a Wannier state localized at site n and E is the
external uniform dc electric field. The intersite coupling is
restricted to nearest neighbors and the hopping rate Jn be-
tween sites n and �n+1� is assumed to linearly increase with
site index n according to Jn=�n with ��0. The energy of
Wannier state �n� is taken to be independent of site n and is
thus removed from Eq. �1�. A possible realization of the
tight-binding Hamiltonian �1� will be discussed below. In
terms of the Wannier amplitudes cn�t�= �n ���t��, the
Schrödinger equation with �=1 reads

i
dcn

dt
= − Jncn+1 − Jn−1cn−1 − Fncn, �2�

where we have set F=eaE and assumed cn=0 for n�0. Al-
ternatively, one can use a representation in terms of Bloch
waves �����a / �2��	1/2�nexp�in�a��n� with −� /a��
	� /a �see, for instance, Ref. 17�. In the latter representa-
tion, it can be readily shown that the evolution equation for
the Bloch amplitude S�� , t���� ���t��
= �a / �2��	1/2�ncn�t�exp�−in�a� reads

i
�S

�t
= −

i

a
�F + 2� cos��a�	

�S

��
+ � exp�i�a�S , �3�

where we used the relation Jn=n�. In order to determine the
energy spectrum E of Hamiltonian �1�, it is convenient to
work in the Bloch representation. We then search for a solu-
tion to Eq. �3� in the form S�� , t�=G���exp�−iEt�. The func-
tion G��� can be formally written as G���
=G�−� /a�exp�ia
���	, where we have set
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��� = 

−�/a

�

dq
E − � exp�iqa�
F + 2� cos�qa�

. �4�

Note that any eigenvector � of energy E for Hamiltonian �1�
that corresponds to a localized state, i.e., for which �n�cn�2
	�, admits of a Bloch representation with regular �i.e., with
no singularities� amplitude G��� satisfying the periodic
boundary condition G�� /a�=G�−� /a�.18 An inspection of
the integral on the right-hand side of Eq. �4� indicates that
the amplitude G is singular for ��F /2, whereas it is regular
in the opposite case. We may therefore conclude that all the
eigenstates of Hamiltonian �1� are extended for 0�F	2�
and localized for F�2�, a localization-delocalization transi-
tion occurring at the critical value F=Fc=2�. Moreover, for
F�2� the periodicity condition 
�� /a�=2l� /a �l
=0, �1, �2, �3, . . .� for the Bloch amplitude G shows that
Hamiltonian �1� has a discrete Wannier-Stark energy spec-
trum given by

El = E0 +
2�l

TB
, l = 0, � 1, � 2, . . . , �5�

where we have set

TB � 

−�

� d

F + 2� cos 
=

2�

�F2 − 4�2
�6�

and

E0 �
�

TB



−�

� d cos 

F + 2� cos 
=

1

2
��F2 − 4�2 − F� . �7�

As the energy levels are equally spaced, BOs of period TB
are thus found for Hamiltonian �1� when the external forcing
F is above the critical value Fc=2�. Note that the BO period
is corrected, as compared to the usual value 2� /F in a tight-
binding homogeneous lattice, by the rate � of the coupling
increase between adjacent lattice sites according to Eq. �6�.
In particular, the BO period diverges near the localization-
delocalization transition point F=Fc. To obtain a semiclassi-
cal description of BOs for a wave packet in the lattice model
�1�, it is worth observing that the solution cn�t� to the discrete
Eq. �2� in the Wannier representation can be obtained from
that of the continuous problem i�� /�t=He� with effective
Hamiltonian He=−�x exp�ip�−��x−1�exp�−ip�−Fx after
setting cn�t�=��x=n , t�, where p=−i�x is the momentum op-
erator in the continuous problem. The evolution equations
for mean values of wave-packet position �x� and momentum
�p� are then obtained from the Ehrenfest theorem using the
effective Hamiltonian He, i.e., id�x� /dt= ��x ,He	� and
id�p� /dt= ��p ,He	�. After computation of the commutators
and taking the semiclassical limit, the resulting equations
read explicitly

d

dt
�x� � 2��x�sin�p�,

d

dt
�p� � F + 2� cos�p� . �8�

The condition F�Fc=2� for the existence of BOs is re-
trieved from the semiclassical Eq. �8� after observing that for
0�F	2� the momentum �p� reaches asymptotically a
steady-state value, given by �−arcos�F / �2��	, and hence the

mean position �x� is exponentially growing at asymptotic
times. As an example, Figs. 1�a� and 1�b� show the evolution
of an initial Gaussian wave packet for an external force F
below �Fig. 1�a�	 and above �Fig. 1�b�	 the critical value Fc,
as obtained by numerical integration of Eq. �2�. In the fig-
ures, the path �x� of the wave packet as predicted by the
semiclassical Eq. �8� is also shown as a dotted line. Note that
in the BO regime, the period of BO turns out to be in excel-
lent agreement with the value TB predicted by Eq. �6�. Fig-
ures 1�c� and 1�d� show the evolution of site occupation am-
plitudes �cn� for the same conditions of Figs. 1�a� and 1�b�
but for single site excitation at initial time. Note that the
breathing mode, associated with BOs in the regime F�Fc, is
strongly asymmetric and the wave-packet center of mass is
not at rest as in the usual breathing oscillatory modes of BOs
in a lattice with uniform hopping rates �see, for instance, Ref.
17�. The asymmetry of the breathing oscillations simply
arises because of the gradient in the hopping rate, which
facilitates the particle hopping toward the direction of in-
creasing coupling.

An experimentally accessible realization of the lattice
model �1� is provided by light transport in a chain of equal
circularly curved evanescently coupled channel optical
waveguides in the geometrical arrangement schematically
shown in Fig. 2�a�. Arrays of coupled waveguides have been
successfully used in the past few years as an accessible labo-
ratory tool to visualize in space the classical analogs of BOs
�Ref. 7� and other coherent quantum phenomena encountered
in atomic, molecular, or solid-state physics.19 In particular,
the current technological advances in waveguide fabrication
enable a precise control of geometrical and material param-
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FIG. 1. �Color online� Evolution of amplitudes �cn�t�� for the
tight-binding lattice model �1� for an input Gaussian wave packet
cn�0�=exp�−�n−20�2 /16	 in �a� and �b�, and for single-site excita-
tion cn�0�=�n,20 in �c� and �d�. Parameter values are F=0.35 and
�=0.2 in �a� and �c�, F=0.6 and �= =0.2 in �b� and �d�. The dotted
curves in �a� and �b� are the wave-packet center-of-mass trajectories
as predicted by the semiclassical analysis �Eq. �8�	.
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eters so as to engineer coupling rates in a prescribed way
with accuracy �see, for instance, Ref. 20�. Indicating by cn�s�
the modal field amplitude of light waves at wavelength �
trapped in the nth waveguide of the chain, in the tight-
binding and nearest-neighbor approximations light transport
in the chain is described by a set of coupled-mode equations
analogous to Eq. �2�, where time t is replaced by the curvi-
linear spatial coordinate s, measured along the curved axis of
the n=0 waveguide, Jn is the coupling rate between
waveguides n and �n+1�, F=2�nsa / �R��, where a is the
�uniform� spacing between adjacent waveguides along the x
axis, ns is the substrate refractive index, and R is the radius
of curvature of the circularly curved waveguides.19 Coupled-
mode equations can be derived from the scalar and paraxial
Schrödinger-type wave equation that describes propagation
of the electric field envelope � in the waveguide reference
frame �r ,y ,s� �see Fig. 2�a�	,19,21

i�
��

�z
= −

�2

2ns
 �2

�r2 +
�2

�y2�� + V�r,y�� −
nsr

R
� , �9�

where V�r ,y��ns−n�r ,y� and n�r ,y� is the s-invariant re-
fractive index profile of the waveguide chain. The coupling
rate Jn can be controlled by varying the distance dn between
adjacent waveguides n and �n+1�. For circularly curved
waveguides and in a wide distance range, Jn is generally very
well described by the exponential law Jn=A exp�−�dn�,
where the parameters A and � depend on waveguide geom-
etry and refractive index change.22 A linear increase in the
coupling rate Jn=�n can be thus obtained by properly de-
creasing the distances dn of adjacent waveguides in the chain
as the site number n increases. We checked the validity of the
tight-binding lattice approximation for the waveguide chain
of Fig. 2�a� and the occurrence of BOs by direct numerical

simulations of Eq. �9� using standard pseudospectral meth-
ods. The refractive index profile of each waveguide used in
numerical simulations is shown in Fig. 2�b� and corresponds
to a circular super-Gaussian shape with maximum index
change �n=0.002. At the wavelength �=633 nm �red�, the
numerically computed coupling rate J�d� between two
waveguides placed at a distance d turns out to be fitted, with
excellent accuracy, by the relation J�d�=A exp�−�d� with
A�24.6 mm−1 and ��0.466 �m−1. The array comprises a
total number N=73 of waveguides, equally spaced along the
x axis by the distance a=6 �m �see Fig. 2�a�	. In the simu-
lations, we assumed coupling rate gradient �=0.02 mm−1,
which is attained by assuming for the distance dn between
adjacent waveguides n and �n+1� in the chain the behavior
shown in Fig. 2�c�. It should be noted that at low-index sites
�1�n� �6�, couplings among non-nearest-neighbor
waveguides are not negligible; however, in our simulations
excitation of such boundary waveguides is small and long-
range coupling effects turn out to be negligible over the con-
sidered propagation distances. The strength of force F
=2�nsa / �R�� is changed by varying the bending radius of
curvature R. In particular, the critical value Fc=2� for
Wannier-Stark localization corresponds to a radius of curva-
ture Rc�2.159 m. As an example, Figs. 3�a�–3�c� show the
numerically computed evolution of integrated beam intensity
�dy���r ,y ,s��2 in the �r ,s� plane for single-site excitation at
the input plane23 and for decreasing values of the radius of
curvature R. Note that as the bending radius changes from
below �Fig. 3�a�	 to above �Figs. 3�b� and 3�c�	 of the
Wannier-Stark localization, a localized breathing mode is
clearly observed with a BO cycle �TB�62 mm in Fig. 3�b�
and TB�29.6 mm in Fig. 3�c�	, which turns out to be in
excellent agreement with the theoretical value predicted by
Eq. �6�.

In conclusion, the onset of BOs in an exactly solvable
one-dimensional tight-binding lattice model, with inhomoge-
neous hopping rates and showing Wannier-Stark localization
at a critical dc field, has been theoretically investigated. An
optical realization of the lattice model, based on light propa-
gation in engineered waveguide arrays, has been also pro-
posed.
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FIG. 2. �Color online� �a� Schematic of a chain of optical
waveguides that realizes the lattice model �1�. �b� Refractive index
profile of the circular channel waveguides used in the simulations.
�c� Distance dn between adjacent waveguides n and �n+1� in the
chain that realizes a linear increase in the hopping rate Jn.
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FIG. 3. �Color online� Evolution of integrated beam intensity in
the �r ,s� plane for single waveguide excitation of the circularly
curved chain of Fig. 2�a� and for decreasing values of the radius of
curvature �a� R=2.3 m, �b� R=0.8 m, and �c� R=0.4 m. Other
parameter values are given in the text.
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